2015年度日本政府(文部科学省)奨学金留学生選考試験

QUALIFYING EXAMINATION FOR APPLICANTS FOR JAPANESE GOVERNMENT (MONBUKAGAKUSHO) SCHOLARSHIPS 2015

学科試験 問題

EXAMINATION QUESTIONS

(高等専門学校留学生)

COLLEGE OF TECHNOLOGY STUDENTS

数 学

MATHEMATICS

注意 ☆試験時間は60分

PLEASE NOTE: THE TEST PERIOD IS 60 MINUTES.

(2015)

MATHEMATICS

Nationality		No.	
Name	(Please print full name, underlining family name)		

- 1 Answer the following questions and write your answers in the boxes provided.
 - 1) Solve the equation $x^3 + 4x^2 + 4x + 1 = 0$.

x =

2) Solve the equation $\cos 2x + \cos x = 0$ $(0 \le x \le 2\pi)$.

x =


3) Solve the inequality $3^{x+1} + \frac{1}{3^x} < 4$.

4) Solve the inequality $\log_2 \sqrt{2x-1} < \log_4 x$.

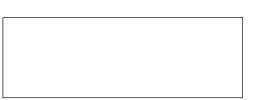
5) Calculate $\sum_{n=0}^{120} \frac{1}{\sqrt{n+1} + \sqrt{n}}$.

6) How many integers n are there such that $1 \le n \le 200$ and n is not divisible by 2 nor 5?

7) Let $\vec{a} = (1, 3, -2)$, $\vec{b} = (2, 1, 1)$, $\vec{c} = (-3, 1 - s, t)$. Find the values of s and t such that \vec{c} is perpendicular to \vec{a} and \vec{b} .

$$s = t =$$

8) Find the tangent line to the curve $y = e^{\frac{x}{2}}$ which goes through the point (0, 0).


$$y =$$

9) The sequence $\{a_n\}$ satisfies the following conditions. Calculate $\sum_{n=1}^{\infty} a_n$.

$$a_1 = 5,$$
 $a_{n+1} = \frac{3}{4}a_n$ $(n = 1, 2, 3, \cdots)$

10) Calculate $\lim_{x\to 0} \frac{1-\sqrt{1-\sin x}}{x}$.

11) Let $f(x) = x - \log_e(2x + 1)$. Solve the inequality f'(x) < 0.

12) Calculate $\int_0^{\pi} x \sin x \ dx$.

- 2 Let $A = a \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$ (a > 0) and $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ satisfy $A^4 + I = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. Answer the following questions and write your answers in the boxes provided.
 - 1) Find a.

$$a =$$

2) Find the minimum positive integer n such that $A^n \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.

$$n =$$

3) Find A^{2014} .

$$A^{2014} = \left(\begin{array}{c} \\ \\ \end{array} \right)$$

- 3 Let n be a positive integer. Answer the following questions and write your answers in the boxes provided.
 - 1) Let $f(x) = x(1-x)^n$. Solve the equation f'(x) = 0 in the open interval 0 < x < 1.

x =

2) Let a_n be the maximum value of $f(x) = x(1-x)^n$ in the closed interval $0 \le x \le 1$. Calculate $\lim_{n \to \infty} (n+1)a_n$.

3) Calculate $\int_0^1 x (1-x)^n dx.$

