2019 年度日本政府(文部科学省) 奨学金留学生選考試験

QUALIFYING EXAMINATION FOR APPLICANTS FOR THE JAPANESE GOVERNMENT (MEXT) SCHOLARSHIP 2019

学科試験 問題

EXAMINATION QUESTIONS

(学部留学生)

UNDERGRADUATE STUDENTS

数 学 (A)

MATHEMATICS(A)

注意 ☆試験時間は60分。

PLEASE NOTE: THE TEST PERIOD IS 60 MINUTES.

MATHEMATICS(A)

(2019)

Nationality		No.		
Name	(Please print full name, underlining	e print full name, underlining family name)		Marks

- 1. Answer the following questions in the corresponding boxes on the answer sheet.
 - (1) Let a point P move on a straight line according to the score shown on a fair dice that we throw by the following rules. P starts from the origin O.
 - If the score is 6, then P returns to the origin O.
 - If the score is 1, 2, or 3, then P moves 1 in a positive direction.
 - If the score is 4 or 5, then P moves 1 in a negative direction.

When we throw the dice four times, the probability that the point P is at the origin O is [1-1].

- (2) For a constant k, we consider the number of distinct real solutions of equation $x|x^2-3x+2|=k$. The range of k that the number of real solutions is maximum is $\lceil [1-2] \rceil < k < \lceil [1-3] \rceil$, and the maximum number of real solutions is $\lceil [1-4] \rceil$.
- (3) Assume that $0 < \theta < \pi$. For three points A(1,0), B(cos θ , sin θ), and C(cos 2θ , sin 2θ) on a unit circle, the area of \triangle ABC is [1-5] by using θ . When $\theta =$ [1-6], the maximum of the area of \triangle ABC is [1-7].
- (4) Let k be a positive integer and let p be a prime number that is greater than 2. The sum of all divisors of the number $2^k p$ is

$$\left(\boxed{\boxed{[1\text{-}8]}-1\right)\left(1+\boxed{\boxed{[1\text{-}9]}}\right),$$

where all divisors include 1 and the number itself.

- (5) In a box, there are 10 cards and a number from 1 to 10 is written on each card. When three cards from the box are randomly taken at a time, we define X, Y, and Z according to three numbers in ascending order. The probability that X is less than or equal to 3 is [1-10].
- (6) The *n*-th term of sequence $1, 4, 10, 19, 31, \ldots$ is [1-11], and the sum of the first n terms of the sequence is [1-12].
- (7) Let a and b be positive real numbers.

$$\frac{4a+b}{2a} + \frac{4a-3b}{b}$$

is at minimum when $b = \boxed{ [1-13] } a$. Its minimum value is $\boxed{ [1-14] }$.

(8) For a variable x, we have

$$(x+1)^n = \sum_{k=0}^n {}_{n}C_k [1-15]$$

It follows that

$$\sum_{k=0}^{n} {}_{n}C_{k}2^{k} = \boxed{[1-17]} \boxed{[1-18]}.$$

By considering the derivatives of the first equality in this item with respect to x, we have

$$\sum_{k=0}^{n} {}_{n}C_{k}k2^{k} = \frac{\boxed{[1-19]}}{\boxed{[1-20]}} \sum_{k=0}^{n} {}_{n}C_{k}2^{k}.$$

(9) For a positive integer n, let x_k (k = 0, 1, ..., n) be an integer between 0 and 5. We have

$$\sum_{k=0}^{n} x_k 6^k = \left[\begin{bmatrix} 1-21 \end{bmatrix} + \left[\begin{bmatrix} 1-22 \end{bmatrix} \right] \left(\sum_{k=1}^{n} x_k \sum_{l=0}^{k-1} 6^l \right)$$

so that a senary (base 6) number can be divided by [1-22] with no remainder if and only if the sum of all of its digits can be divided by [1-23] with no remainder.

(10) It is clear that 253x + 256y = 253(x + y) + 3y. For a pair of integers x and y satisfying

$$253x + 256y = 1,$$

the absolute value of x is minimum. Then, x = [1-24] and y = [1-25].

(11) Translate the graph of the function $y = 2x^2 + 3x + 1$ by 2 units in the x-direction and by -3 units in the y-direction and express the resulting graph by

$$y = a_2 x^2 + a_1 x + a_0.$$

Then, we have $a_2 = \boxed{[1-26]}$, $a_1 = \boxed{[1-27]}$, $a_0 = \boxed{[1-28]}$.

- **2.** For a triangle ABC, take a point D on side AB such that side CD is orthogonal to side AB. We let $\angle BAC = \frac{\pi}{12}$ and let the lengths of side AB and side AD be $2\sqrt{2}$ and $\sqrt{6}$, respectively. Answer the following questions in the corresponding boxes on the answer sheet. They should be simplified as much as possible.
 - (1) From $\pi/12 = \pi/3 \pi/4$, we have

$$\cos\frac{\pi}{12} = \frac{\boxed{[2\text{-}1]} + \sqrt{2}}{4}.$$

(2) The length of side AC is

$$\boxed{[2-2] - 2\sqrt{3}.}$$

(3) The square of the length of side BC, $(BC)^2$, is

$$\boxed{[2-3]} - 32\sqrt{3}.$$

(4) Thus, the length of side BC is

$$[2-4] - 2\sqrt{6}.$$

3. For a quadratic function f(x), we define a function as follows:

$$F(x) = \int_0^x f(t) dt.$$

Assume that a is a positive number and the function F(x) has extreme values at x = -2a, 2a. Answer the following questions in the corresponding boxes on the answer sheet.

(1) For any x, it holds that

$$F(-x) = \boxed{[3-1]} F(x).$$

- (2) All the values of x that satisfy F(x) + F(2a) = 0 are [3-2].
- (3) The local maximum value of function $\frac{F(x)}{F'(0)}$ is [3-3].